
1

Pointers and Memory Allocation

 The C++ run-time system can create new objects

 A memory allocator finds a storage location for a new object

new Employee;

 The memory allocator keeps a large storage area, called
the heap

 The heap is a flexible pool of memory that can hold values of
any type

 When you allocate a new heap object, the memory allocator
tells where the object is located, by giving you the
object's memory address

 Use a pointer to store and manipulate a memory address

Deallocating Dynamic Memory

 The expression:new Employee

 is very different from:Employee harry;

 harry lives on a stack

 The stack is a storage area associated with the defining

function

void f()

{

 Employee harry; // memory for employee allocated

on the stack

 ...

2

} // Memory for employee automatically reclaimed

 Values allocated from the heap stay alive until the
programmer reclaims it

Pointers and Memory Allocation

 The allocator returns an address,
or pointer

 Pointers are stored in a pointer
variable

 To declare pointers:

Employee* boss;

Time* deadline;

 The

types Employee* and Time* are

pointers to employee and time
objects

 boss and deadline store

addresses

 They do not store actual
employee or time objects

Figure 1 Pointers and the
Objects to Which They

Point

Pointers and Memory Allocation

 You can also call the new command in conjunction with a

constructor to initialize the object

Employee* boss = new Employee("Lin, Lisa", 68000);

3

 To access a value, given a pointer, you must dereference the

pointer

Employee* boss = ...;

raise_salary(*boss, 10);

 To get the boss' name, you might try

string name = *boss.get_name(); // Error

 . has higher precedence; you tried to send the pointer itself

a message

 This will get an Employee object, then get its name:

string name = (*boss).get_name(); // Error

 The -> operator does the same thing:

string name = boss->get_name(); // Error

Pointers and Memory Allocation

 The special value NULL indicates that a pointer doesn't point

anywhere

 Never leave a pointer uninitialized

 Set them to NULL when you define them

Employee* boss = NULL; // will set later

. . .

if (boss != NULL) name = boss->get_name(); // OK

 You cannot dereference a NULL pointer

4

Employee* boss = NULL;

string name = boss->get_name(); // NO!! Program will

crash

 Crashing is better than processing erroneous data

Employee* boss;

string name = boss->get_name(); // NO!! boss

contains a random address

 Better still, test for the sentinel, as above

Syntax : new Expression

new type_name

new type_name(expression1, expression2, ... ,

expressionn)

Example:

new Time;

new Employee("Lin, Lisa", 68000)

Purpose:

Allocate and construct a value on the heap and return a pointer to
the value.

Syntax : Pointer Variable Definition

type_name* variable_name;

type_name* variable_name = expression;

Example:

Employee* boss;

5

Product* p = new Product;

Purpose:

Define a new pointer variable, and optionally supply an initial
value.

Syntax : Pointer Dereferencing

*pointer_expression

pointer_expression->class_member

Example:

*boss

boss->set_salary(70000)

Purpose:

Access the object to which a pointer points.

Common Error

Declaring Two Pointers on the Same

Line

 In this declaration, p is a pointer,

while q is an actual Employee

 Employee* p, q;

 To make them both pointers:

6

 Employee *p, *q;(the spacing is

irrelevant)

 Might be clearer to use a line for each

declaration:

 Employee *p;

 Employee *q;

Advanced

The this Pointer

 Every (non-static) method has

a this pointer

 this is the pointer to the implicit

parameter

 If you call

next.is_better_than(best)

 this is of type Product*

 this points to next

 Could be used like this:

bool Product::is_better_than(Product b)

{

 if (this->price == 0) return true;

 if (b.price == 0) return false;

7

 return this->score / this->price > b.score /

b.price;

}

 Note, b is an object, this is a pointer

Deallocating Dynamic Memory

 You must manually reclaim dynamically
allocated objects

 Use the delete operator

void g()

{

 Employee* boss;

 boss = new Employee(...); // Memory

for employee allocated on the heap

 ...

 delete boss; // Memory for employee

manually reclaimed

}

 delete does nothing to boss

 boss is a stack variable — will be

reclaimed at the end of the block

 delete frees the memory that boss pointed

to

 boss is not set to NULL; it points to the

same place

8

Syntax : delete Expression

delete pointer_expression;

Example:

delete boss;

Purpose:

Deallocate a value that is stored on the heap
and allow the memory to be reallocated.

Common Error

Dangling Pointers

 A pointer that doesn't point to a valid
object

 Pointer wasn't initialized, or

 Object pointer referenced was reclaimed

 Writing to this location may change other

variables, or your program

 Reading from this location might crash

your program (if you're lucky)

 This is particularly insidious:

delete boss;

string name = boss->get_name(); // NO!!

boss points to a deleted element

9

 Almost impossible to catch during testing

 Object appears to still be there

 Location might well be claimed for something
else

Common Error

Memory Leaks

 A memory block that is not deallocated is

a memory leak

 Leaked memory can cause the heap to run

out of memory

 Program crashes

 Computer freezes up

 Each new should be paired with a delete

 Memory leaks should be avoided, for

memory-intensive or long-running
programs

 Should be avoided for smaller programs,
too

Advanced Topic

The Address Operator

 The & operator (address operator) returns

the address of an existing, stack variable

10

Employee harry;

Employee* p = &harry;

 The Address Operator

 Never delete a stack variable!

delete &harry; // NEVER!

 That location would then be on the
stack, and part of the heap memory

Common Uses for Pointers

Optional Attributes

 Consider a department class, which allows

for an optional receptionist:

class Department

{

 ...

private:

 string name;

 Employee* receptionist;

};

11

 receptionist points to an actual

employee, or is NULL if not needed

 This is better than allocating space for an

object that might not be used.

class Department // Modeled without

pointers

{

 ...

private:

 string name;

 bool has_receptionist;

 Employee receptionist;

};
Common Uses for Pointers

Object Sharing

 Rather than duplicating objects, use
pointers to share the object

 Example: In some departments, the
secretary and the receptionist are the

same person

class Department

{

 ...

private:

 string name;

12

 Employee* receptionist;

 Employee* secretary;

};

Figure 3 Three Pointers Share an Employee Object

...

Employee* tina = new Employee("Tester,

Tina", 50000);

Department qc("Quality Control");

qc.set_receptionist(tina);

qc.set_secretary(tina);

tina->set_salary(55000);

Common Uses for Pointers

Sharing Objects (cont.)

 Particularly important when changes to

the object need to be observed by all
users of the object

 Without using pointers, changing Tina's

salary would not update the information
in the receptionist or secretary attribute

13

Employee tina("Tester,

Tina", 50000);

Department qc("Quality

Control");

qc.set_receptionist(tina

);

qc.set_secretary(tina);

tina.set_salary(55000);

 Department object
now contains two

copies of Tina

 Copies are not

affected by Tina's

raise

Figure 4 Separate Employee
Objects

#include <string>

#include <iostream>

using namespace std;

#include "ccc_empl.h"

/**

 A department in an organization.

*/

class Department

{

public:

 Department(string n);

 void set_receptionist(Employee* e);

 void set_secretary(Employee* e);

 void print() const;

private:

 string name;

 Employee* receptionist;

 Employee* secretary;

14

};

/**

 Constructs a department with a given name.

 @param n the department name

*/

Department::Department(string n)

{

 name = n;

 receptionist = NULL;

 secretary = NULL;

}

/**

 Sets the receptionist for this department.

 @param e the receptionist

*/

void Department::set_receptionist(Employee* e)

{

 receptionist = e;

}

/**

 Sets the secretary for this department.

 @param e the secretary

*/

void Department::set_secretary(Employee* e)

{

 secretary = e;

}

/**

 Prints a description of this department.

*/

void Department::print() const

{

 cout << "Name: " << name << "\n"

 << "Receptionist: ";

 if (receptionist == NULL)

 cout << "None";

 else

 cout << receptionist->get_name() << " "

 << receptionist->get_salary();

 cout << "\nSecretary: ";

 if (secretary == NULL)

 cout << "None";

 else if (secretary == receptionist)

 cout << "Same";

 else

 cout << secretary->get_name() << " "

 << secretary->get_salary();

 cout << "\n";

}

int main()

{

 Department shipping("Shipping");

15

 Department qc("Quality Control");

 Employee* harry = new Employee("Hacker, Harry", 45000);

 shipping.set_secretary(harry);

 Employee* tina = new Employee("Tester, Tina", 50000);

 qc.set_receptionist(tina);

 qc.set_secretary(tina);

 tina->set_salary(55000);

 shipping.print();

 qc.print();

 delete tina;

 delete harry;

 return 0;

}

Advanced Topic

References

 You saw reference parameters.

void raise_salary(Employee& e, double by)

{

 double new_salary = e.get_salary() * (1 + by / 100);

 e.set_salary(new_salary);

}

 The value of harry may change in this

call:

raise_salary(harry, percent);

 References are just syntactic sugar for
pointers

 This function receives the address of

an Employee object, and a copy of

a double

Advanced Topic (cont.)

16

References

 In C this function would've been written:

void raise_salary(Employee* pe, double

by)

{

 double new_salary = pe->get_salary() *

(1 + by / 100);

 pe->set_salary(new_salary);

}

 The call, above, would look like this:

raise_salary(&harry, percent);

 When you use references, the compiler

takes care of referencing and

dereferencing pointers.

 Arrays and Pointers

 There is an intimate connection between
arrays and pointers in C++

 The name of an array is a pointer to the

starting element

int a[10];

int* p = a; // now p points to a[0];

17

 a can be dereferenced: *a = 12; is the

same as a[0] = 12;

 Pointers into arrays support pointer

arithmetic: *(a + 3) is the same as a[3]

Arrays and Pointers

 This relationship is called
the array/pointer duality law

 For any integer n,

 *(a + n) ≡ a[n]

 This explains why array indices
start at 0

 a (a+0) points to the start of

the array

Pointers into an
Array

Arrays and Pointers

 When an array is passed into a function, it

is actually a pointer to the starting

element of the array

double maximum(const double a[], int

a_size)

{

 if (a_size == 0) return 0;

 double highest = a[0];

18

 for (int i = 0; i < a_size; i++)

 if (a[i] > highest)

 highest = a[i];

 return highest;

}

 The function receives only the starting
address of the array

double maximum(const double* a, int

a_size)

{

 // Identical code as above yields same

results

 ...

}

Advanced Topic

Using Pointers to Step Through an Array

 Rather than incrementing an index,

increment the pointer

double maximum(const double* a, int

a_size)

{

 if (a_size == 0) return 0;

 double highest = *a;

 const double* p = a + 1;

 int count = a_size - 1;

 while (count > 0)

19

 {

 if (*p > highest)

 highest = *p;

 p++;

 count--;

 }

 return highest;

}
Common Error

Returning a Pointer to a Local Array

 Don't return pointers to local (stack)
variables

double* minmax(const double a[], int

a_size)

{

 assert(a_size > 0);

 double result[2];

 result[0] = a[0]; // result[0] is the

minimum

 result[1] = a[0]; // result[1] is the

maximum

 for (int i = 0; i < a_size; i++)

 {

 if (a[i] < result[0]) result[0] =

a[i];

20

 if (a[i] > result[1]) result[1] =

a[i];

 }

 return result; // ERROR!

}

 result is local to minmax

 When function exits, result is gone

Advanced Topic

Dynamically Allocated Arrays

 You can allocate arrays from the heap:

int staff_capacity = ...;

Employee* staff = new

Employee[staff_capacity];

 new[] operator allocates an array

of staff_capacity Employees (using

default constructor)

 Size does not need to be known at

compile time

 Manipulated just like any other array

 This is how variable-sized containers, like

the Vector, is implemented

 Must be deallocated (reclaimed) using

the delete[] operator:

21

delete[] staff;

Advanced Topic (cont.)

Dynamically Allocated Arrays - Resizing

 If later you need a larger array:

 get larger array from the heap

 copy the contents over

 delete the original array

 fix up your pointers:

int bigger_capacity = 2 * staff_capacity;

Employee* bigger = new Employee[bigger_capacity];

for (int i = 0; i < staff_capacity; i++)

 bigger[i] = staff[i];

delete[] staff;

staff = bigger;

staff_capacity = bigger_capacity;

22

 Pointers to Character Strings

 C++ inherits primitive string handling

from the C language, in which strings are

represented as arrays of char values

 Though not recommended for use, you'll
need to recognize character pointers or

arrays in your programs when you see

them

 Literal strings are stored

inside char arrays

char s[] = "Harry";

0 1 2 3 4 5

'H' 'a' 'r' 'r' 'y' '\0'

 Space for the null-terminator (\n) is

automatically allocated

Pointers to Character Strings

 Many pre-STL functions return a char*

 Use constructor string(char *) to convert

any character pointer or array to a safe

and convenient string object:

23

char* p = "Harry";

string name(p);

 Some functions require a char* as an

argument

 The string::c_str method returns

a char* that points to the first character

in the string object

 E.g., tempnam(), in the standard library,

yields the name of a temporary file, and

expects a char* parameter for the

directory name:

string dir = ...;

char* p = tempnam(dir.c_str(), NULL);

Common Error

Failing to Allocate Memory

 Writing (or copying) a string to random

memory is a very common and
dangerous error

 char* p;

 strcpy(p, "Harry");

 This is not a syntax error

24

 If you're lucky, the address is not legal,

and the program crashes

 If you're less lucky, the data will be

written wherever

 This is a very insidious error; tough to

detect, and tough to find

 It might be corrupting somebody else's

memory

 Somebody else might be overwriting "your"
string

Common Error

Copying Character Pointers

 Assignment, copying and

comparing string objects is intuitive:

 string s = "Harry";

 string t = s;

 t[0] = 'L'; // now s is "Harry" and t

is "Larry"

 s and t are distinct objects

 Same example, using

pointers:

 char* p = "Harry";

25

 char* q = p;

 q[0] = 'L'; // Now

both p and q point to

"Larry"

 p and q are distinct

pointers, storing the

same address

 Both refer to the

same object

 Two Character Pointers into the
Same Character Array

Common Error (cont.)

Copying Character Pointers

 Arrays can not be assigned in the usual

way:

 char a[] = "Harry";

 char b[6];

 b = a; // ERROR

 Use strcpy():

 strcpy(b, a);

 Since strcpy() has no idea how large

array b might be, this is safer:

 strcpy(b, a, 5);

 Pointers to Functions

26

 Sometimes a function depends on another

function

 Consider a function that prints a table of
values of the function
f(n) = n2 :

1 1

2 4

3 9

4 16

...

10 100

 Same logic to print the values of f(x) = x - 2

 Function print_table takes a function

pointer as an argument

 As with arrays, the name of a function is
really a pointer to a function:

print_table(sqrt);

27

Pointers to Functions

 To print a table of squares, first make

a square function:

double square(double x) { return x * x; }

...

print_table(square);

 The function to print a table:

void print_table(DoubleFunPointer f)

{

 cout << setprecision(2);

 for (double x = 1; x <= 10; x++)

 {

 double y = f(x);

 cout << setw(10) << x << "|" <<

setw(10) << y << endl;

 }

}

 DoubleFunPointer will be explained shortly

Pointers to Functions

 The parameter f can be used as any other

function

 Some prefer to call the function like this:

(*f)(x)

28

 To declare the function pointer:

double (*f)(double)

 This is a function (not a pointer) which

returns a double* :

double *f(double)

 print_table() looks like this:

void print_table(double (*f)(double))

 A type definition makes this easier to

read:

typedef double

(*DoubleFunPointer)(double);

void print_table(DoubleFunPointer f);

