
1

Pointers and Memory Allocation

 The C++ run-time system can create new objects

 A memory allocator finds a storage location for a new object

new Employee;

 The memory allocator keeps a large storage area, called
the heap

 The heap is a flexible pool of memory that can hold values of
any type

 When you allocate a new heap object, the memory allocator
tells where the object is located, by giving you the
object's memory address

 Use a pointer to store and manipulate a memory address

Deallocating Dynamic Memory

 The expression:new Employee

 is very different from:Employee harry;

 harry lives on a stack

 The stack is a storage area associated with the defining

function

void f()

{

 Employee harry; // memory for employee allocated

on the stack

 ...

2

} // Memory for employee automatically reclaimed

 Values allocated from the heap stay alive until the
programmer reclaims it

Pointers and Memory Allocation

 The allocator returns an address,
or pointer

 Pointers are stored in a pointer
variable

 To declare pointers:

Employee* boss;

Time* deadline;

 The

types Employee* and Time* are

pointers to employee and time
objects

 boss and deadline store

addresses

 They do not store actual
employee or time objects

Figure 1 Pointers and the
Objects to Which They

Point

Pointers and Memory Allocation

 You can also call the new command in conjunction with a

constructor to initialize the object

Employee* boss = new Employee("Lin, Lisa", 68000);

3

 To access a value, given a pointer, you must dereference the

pointer

Employee* boss = ...;

raise_salary(*boss, 10);

 To get the boss' name, you might try

string name = *boss.get_name(); // Error

 . has higher precedence; you tried to send the pointer itself

a message

 This will get an Employee object, then get its name:

string name = (*boss).get_name(); // Error

 The -> operator does the same thing:

string name = boss->get_name(); // Error

Pointers and Memory Allocation

 The special value NULL indicates that a pointer doesn't point

anywhere

 Never leave a pointer uninitialized

 Set them to NULL when you define them

Employee* boss = NULL; // will set later

. . .

if (boss != NULL) name = boss->get_name(); // OK

 You cannot dereference a NULL pointer

4

Employee* boss = NULL;

string name = boss->get_name(); // NO!! Program will

crash

 Crashing is better than processing erroneous data

Employee* boss;

string name = boss->get_name(); // NO!! boss

contains a random address

 Better still, test for the sentinel, as above

Syntax : new Expression

new type_name

new type_name(expression1, expression2, ... ,

expressionn)

Example:

new Time;

new Employee("Lin, Lisa", 68000)

Purpose:

Allocate and construct a value on the heap and return a pointer to
the value.

Syntax : Pointer Variable Definition

type_name* variable_name;

type_name* variable_name = expression;

Example:

Employee* boss;

5

Product* p = new Product;

Purpose:

Define a new pointer variable, and optionally supply an initial
value.

Syntax : Pointer Dereferencing

*pointer_expression

pointer_expression->class_member

Example:

*boss

boss->set_salary(70000)

Purpose:

Access the object to which a pointer points.

Common Error

Declaring Two Pointers on the Same

Line

 In this declaration, p is a pointer,

while q is an actual Employee

 Employee* p, q;

 To make them both pointers:

6

 Employee *p, *q;(the spacing is

irrelevant)

 Might be clearer to use a line for each

declaration:

 Employee *p;

 Employee *q;

Advanced

The this Pointer

 Every (non-static) method has

a this pointer

 this is the pointer to the implicit

parameter

 If you call

next.is_better_than(best)

 this is of type Product*

 this points to next

 Could be used like this:

bool Product::is_better_than(Product b)

{

 if (this->price == 0) return true;

 if (b.price == 0) return false;

7

 return this->score / this->price > b.score /

b.price;

}

 Note, b is an object, this is a pointer

Deallocating Dynamic Memory

 You must manually reclaim dynamically
allocated objects

 Use the delete operator

void g()

{

 Employee* boss;

 boss = new Employee(...); // Memory

for employee allocated on the heap

 ...

 delete boss; // Memory for employee

manually reclaimed

}

 delete does nothing to boss

 boss is a stack variable — will be

reclaimed at the end of the block

 delete frees the memory that boss pointed

to

 boss is not set to NULL; it points to the

same place

8

Syntax : delete Expression

delete pointer_expression;

Example:

delete boss;

Purpose:

Deallocate a value that is stored on the heap
and allow the memory to be reallocated.

Common Error

Dangling Pointers

 A pointer that doesn't point to a valid
object

 Pointer wasn't initialized, or

 Object pointer referenced was reclaimed

 Writing to this location may change other

variables, or your program

 Reading from this location might crash

your program (if you're lucky)

 This is particularly insidious:

delete boss;

string name = boss->get_name(); // NO!!

boss points to a deleted element

9

 Almost impossible to catch during testing

 Object appears to still be there

 Location might well be claimed for something
else

Common Error

Memory Leaks

 A memory block that is not deallocated is

a memory leak

 Leaked memory can cause the heap to run

out of memory

 Program crashes

 Computer freezes up

 Each new should be paired with a delete

 Memory leaks should be avoided, for

memory-intensive or long-running
programs

 Should be avoided for smaller programs,
too

Advanced Topic

The Address Operator

 The & operator (address operator) returns

the address of an existing, stack variable

10

Employee harry;

Employee* p = &harry;

 The Address Operator

 Never delete a stack variable!

delete &harry; // NEVER!

 That location would then be on the
stack, and part of the heap memory

Common Uses for Pointers

Optional Attributes

 Consider a department class, which allows

for an optional receptionist:

class Department

{

 ...

private:

 string name;

 Employee* receptionist;

};

11

 receptionist points to an actual

employee, or is NULL if not needed

 This is better than allocating space for an

object that might not be used.

class Department // Modeled without

pointers

{

 ...

private:

 string name;

 bool has_receptionist;

 Employee receptionist;

};
Common Uses for Pointers

Object Sharing

 Rather than duplicating objects, use
pointers to share the object

 Example: In some departments, the
secretary and the receptionist are the

same person

class Department

{

 ...

private:

 string name;

12

 Employee* receptionist;

 Employee* secretary;

};

Figure 3 Three Pointers Share an Employee Object

...

Employee* tina = new Employee("Tester,

Tina", 50000);

Department qc("Quality Control");

qc.set_receptionist(tina);

qc.set_secretary(tina);

tina->set_salary(55000);

Common Uses for Pointers

Sharing Objects (cont.)

 Particularly important when changes to

the object need to be observed by all
users of the object

 Without using pointers, changing Tina's

salary would not update the information
in the receptionist or secretary attribute

13

Employee tina("Tester,

Tina", 50000);

Department qc("Quality

Control");

qc.set_receptionist(tina

);

qc.set_secretary(tina);

tina.set_salary(55000);

 Department object
now contains two

copies of Tina

 Copies are not

affected by Tina's

raise

Figure 4 Separate Employee
Objects

#include <string>

#include <iostream>

using namespace std;

#include "ccc_empl.h"

/**

 A department in an organization.

*/

class Department

{

public:

 Department(string n);

 void set_receptionist(Employee* e);

 void set_secretary(Employee* e);

 void print() const;

private:

 string name;

 Employee* receptionist;

 Employee* secretary;

14

};

/**

 Constructs a department with a given name.

 @param n the department name

*/

Department::Department(string n)

{

 name = n;

 receptionist = NULL;

 secretary = NULL;

}

/**

 Sets the receptionist for this department.

 @param e the receptionist

*/

void Department::set_receptionist(Employee* e)

{

 receptionist = e;

}

/**

 Sets the secretary for this department.

 @param e the secretary

*/

void Department::set_secretary(Employee* e)

{

 secretary = e;

}

/**

 Prints a description of this department.

*/

void Department::print() const

{

 cout << "Name: " << name << "\n"

 << "Receptionist: ";

 if (receptionist == NULL)

 cout << "None";

 else

 cout << receptionist->get_name() << " "

 << receptionist->get_salary();

 cout << "\nSecretary: ";

 if (secretary == NULL)

 cout << "None";

 else if (secretary == receptionist)

 cout << "Same";

 else

 cout << secretary->get_name() << " "

 << secretary->get_salary();

 cout << "\n";

}

int main()

{

 Department shipping("Shipping");

15

 Department qc("Quality Control");

 Employee* harry = new Employee("Hacker, Harry", 45000);

 shipping.set_secretary(harry);

 Employee* tina = new Employee("Tester, Tina", 50000);

 qc.set_receptionist(tina);

 qc.set_secretary(tina);

 tina->set_salary(55000);

 shipping.print();

 qc.print();

 delete tina;

 delete harry;

 return 0;

}

Advanced Topic

References

 You saw reference parameters.

void raise_salary(Employee& e, double by)

{

 double new_salary = e.get_salary() * (1 + by / 100);

 e.set_salary(new_salary);

}

 The value of harry may change in this

call:

raise_salary(harry, percent);

 References are just syntactic sugar for
pointers

 This function receives the address of

an Employee object, and a copy of

a double

Advanced Topic (cont.)

16

References

 In C this function would've been written:

void raise_salary(Employee* pe, double

by)

{

 double new_salary = pe->get_salary() *

(1 + by / 100);

 pe->set_salary(new_salary);

}

 The call, above, would look like this:

raise_salary(&harry, percent);

 When you use references, the compiler

takes care of referencing and

dereferencing pointers.

 Arrays and Pointers

 There is an intimate connection between
arrays and pointers in C++

 The name of an array is a pointer to the

starting element

int a[10];

int* p = a; // now p points to a[0];

17

 a can be dereferenced: *a = 12; is the

same as a[0] = 12;

 Pointers into arrays support pointer

arithmetic: *(a + 3) is the same as a[3]

Arrays and Pointers

 This relationship is called
the array/pointer duality law

 For any integer n,

 *(a + n) ≡ a[n]

 This explains why array indices
start at 0

 a (a+0) points to the start of

the array

Pointers into an
Array

Arrays and Pointers

 When an array is passed into a function, it

is actually a pointer to the starting

element of the array

double maximum(const double a[], int

a_size)

{

 if (a_size == 0) return 0;

 double highest = a[0];

18

 for (int i = 0; i < a_size; i++)

 if (a[i] > highest)

 highest = a[i];

 return highest;

}

 The function receives only the starting
address of the array

double maximum(const double* a, int

a_size)

{

 // Identical code as above yields same

results

 ...

}

Advanced Topic

Using Pointers to Step Through an Array

 Rather than incrementing an index,

increment the pointer

double maximum(const double* a, int

a_size)

{

 if (a_size == 0) return 0;

 double highest = *a;

 const double* p = a + 1;

 int count = a_size - 1;

 while (count > 0)

19

 {

 if (*p > highest)

 highest = *p;

 p++;

 count--;

 }

 return highest;

}
Common Error

Returning a Pointer to a Local Array

 Don't return pointers to local (stack)
variables

double* minmax(const double a[], int

a_size)

{

 assert(a_size > 0);

 double result[2];

 result[0] = a[0]; // result[0] is the

minimum

 result[1] = a[0]; // result[1] is the

maximum

 for (int i = 0; i < a_size; i++)

 {

 if (a[i] < result[0]) result[0] =

a[i];

20

 if (a[i] > result[1]) result[1] =

a[i];

 }

 return result; // ERROR!

}

 result is local to minmax

 When function exits, result is gone

Advanced Topic

Dynamically Allocated Arrays

 You can allocate arrays from the heap:

int staff_capacity = ...;

Employee* staff = new

Employee[staff_capacity];

 new[] operator allocates an array

of staff_capacity Employees (using

default constructor)

 Size does not need to be known at

compile time

 Manipulated just like any other array

 This is how variable-sized containers, like

the Vector, is implemented

 Must be deallocated (reclaimed) using

the delete[] operator:

21

delete[] staff;

Advanced Topic (cont.)

Dynamically Allocated Arrays - Resizing

 If later you need a larger array:

 get larger array from the heap

 copy the contents over

 delete the original array

 fix up your pointers:

int bigger_capacity = 2 * staff_capacity;

Employee* bigger = new Employee[bigger_capacity];

for (int i = 0; i < staff_capacity; i++)

 bigger[i] = staff[i];

delete[] staff;

staff = bigger;

staff_capacity = bigger_capacity;

22

 Pointers to Character Strings

 C++ inherits primitive string handling

from the C language, in which strings are

represented as arrays of char values

 Though not recommended for use, you'll
need to recognize character pointers or

arrays in your programs when you see

them

 Literal strings are stored

inside char arrays

char s[] = "Harry";

0 1 2 3 4 5

'H' 'a' 'r' 'r' 'y' '\0'

 Space for the null-terminator (\n) is

automatically allocated

Pointers to Character Strings

 Many pre-STL functions return a char*

 Use constructor string(char *) to convert

any character pointer or array to a safe

and convenient string object:

23

char* p = "Harry";

string name(p);

 Some functions require a char* as an

argument

 The string::c_str method returns

a char* that points to the first character

in the string object

 E.g., tempnam(), in the standard library,

yields the name of a temporary file, and

expects a char* parameter for the

directory name:

string dir = ...;

char* p = tempnam(dir.c_str(), NULL);

Common Error

Failing to Allocate Memory

 Writing (or copying) a string to random

memory is a very common and
dangerous error

 char* p;

 strcpy(p, "Harry");

 This is not a syntax error

24

 If you're lucky, the address is not legal,

and the program crashes

 If you're less lucky, the data will be

written wherever

 This is a very insidious error; tough to

detect, and tough to find

 It might be corrupting somebody else's

memory

 Somebody else might be overwriting "your"
string

Common Error

Copying Character Pointers

 Assignment, copying and

comparing string objects is intuitive:

 string s = "Harry";

 string t = s;

 t[0] = 'L'; // now s is "Harry" and t

is "Larry"

 s and t are distinct objects

 Same example, using

pointers:

 char* p = "Harry";

25

 char* q = p;

 q[0] = 'L'; // Now

both p and q point to

"Larry"

 p and q are distinct

pointers, storing the

same address

 Both refer to the

same object

 Two Character Pointers into the
Same Character Array

Common Error (cont.)

Copying Character Pointers

 Arrays can not be assigned in the usual

way:

 char a[] = "Harry";

 char b[6];

 b = a; // ERROR

 Use strcpy():

 strcpy(b, a);

 Since strcpy() has no idea how large

array b might be, this is safer:

 strcpy(b, a, 5);

 Pointers to Functions

26

 Sometimes a function depends on another

function

 Consider a function that prints a table of
values of the function
f(n) = n2 :

1 1

2 4

3 9

4 16

...

10 100

 Same logic to print the values of f(x) = x - 2

 Function print_table takes a function

pointer as an argument

 As with arrays, the name of a function is
really a pointer to a function:

print_table(sqrt);

27

Pointers to Functions

 To print a table of squares, first make

a square function:

double square(double x) { return x * x; }

...

print_table(square);

 The function to print a table:

void print_table(DoubleFunPointer f)

{

 cout << setprecision(2);

 for (double x = 1; x <= 10; x++)

 {

 double y = f(x);

 cout << setw(10) << x << "|" <<

setw(10) << y << endl;

 }

}

 DoubleFunPointer will be explained shortly

Pointers to Functions

 The parameter f can be used as any other

function

 Some prefer to call the function like this:

(*f)(x)

28

 To declare the function pointer:

double (*f)(double)

 This is a function (not a pointer) which

returns a double* :

double *f(double)

 print_table() looks like this:

void print_table(double (*f)(double))

 A type definition makes this easier to

read:

typedef double

(*DoubleFunPointer)(double);

void print_table(DoubleFunPointer f);

